Building Recommender Systems with Machine Learning and AI

بواسطة: Udemy

Overview

How to create machine learning recommendation systems with deep learning, collaborative filtering, and Python.

What you'll learn:
  • Understand and apply user-based and item-based collaborative filtering to recommend items to users
  • Create recommendations using deep learning at massive scale
  • Build recommendation engines with neural networks and Restricted Boltzmann Machines (RBM's)
  • Make session-based recommendations with recurrent neural networks and Gated Recurrent Units (GRU)
  • Build a framework for testing and evaluating recommendation algorithms with Python
  • Apply the right measurements of a recommender system's success
  • Build recommender systems with matrix factorization methods such as SVD and SVD++
  • Apply real-world learnings from Netflix and YouTube to your own recommendation projects
  • Combine many recommendation algorithms together in hybrid and ensemble approaches
  • Use Apache Spark to compute recommendations at large scale on a cluster
  • Use K-Nearest-Neighbors to recommend items to users
  • Solve the "cold start" problem with content-based recommendations
  • Understand solutions to common issues with large-scale recommender systems

Updated with Neural Collaborative Filtering (NCF), Tensorflow Recommenders (TFRS) and Generative Adversarial Networks for recommendations (GANs)

Learn how to build machine learning recommendation systems from one of Amazon's pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon's personalized product recommendation systems.

You've seen automated recommendations everywhere - on Netflix's home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you'll become very valuable to them.

We'll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you'll learn from Frank's extensive industry experience to understand the real-world challenges you'll encounter when applying these algorithms at large scale and with real-world data.

Recommender systems are complex; don't enroll in this course expecting a learn-to-code type of format. There's no recipe to follow on how to make a recommender system; you need to understand the different algorithms and how to choose when to apply each one for a given situation. We assume you already know how to code.

However, this course is very hands-on; you'll develop your own framework for evaluating and combining many different recommendation algorithms together, and you'll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people. We'll cover:


  • Building a recommendation engine

  • Evaluating recommender systems

  • Content-based filtering using item attributes

  • Neighborhood-based collaborative filtering with user-based, item-based, and KNN CF

  • Model-based methods including matrix factorization and SVD

  • Applying deep learning, AI, and artificial neural networks to recommendations

  • Using the latest frameworks from Tensorflow (TFRS) and Amazon Personalize.

  • Session-based recommendations with recursive neural networks

  • Building modern recommenders with neural collaborative filtering

  • Scaling to massive data sets with ApacheSpark machine learning, Amazon DSSTNE deep learning, and AWSSageMaker with factorization machines

  • Real-world challenges and solutions with recommender systems

  • Case studies from YouTube andNetflix

  • Building hybrid, ensemble recommenders

  • "Bleeding edge alerts" covering the latest research in the field of recommender systems

This comprehensive course takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user.

The coding exercises in this course use the Python programming language. We include an intro to Python if you're new to it, but you'll need some prior programming experience in order to use this course successfully. We also include a short introduction to deep learning if you are new to the field of artificial intelligence, but you'll need to be able to understand new computer algorithms.

High-quality, hand-edited English closed captions are included to help you follow along.

I hope to see you in the course soon!

Taught by

Sundog Education by Frank Kane and Frank Kane

Building Recommender Systems with Machine Learning and AI
الذهاب الي الدورة

Building Recommender Systems with Machine Learning and AI

بواسطة: Udemy

  • Udemy
  • مدفوعة
  • الإنجليزية
  • متاح شهادة
  • متاح في أي وقت
  • intermediate
  • English
8.1.2PHP Version856msRequest Duration2MBMemory UsageGET ar/الدورات/{slug}Route
    • Booting (549ms)
    • Application (305ms)
    • 1 x Booting (64.13%)
      548.79ms
      1 x Application (35.62%)
      304.83ms
      14 templates were rendered
      • public.courses.show (resources/views/public/courses/show.blade.php)3bladefile
        Params
        0
        course
        1
        links
        2
        config
      • public.courses.partials.breadcrumbs (resources/views/public/courses/partials/breadcrumbs.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.courses.partials.heading (resources/views/public/courses/partials/heading.blade.php)7bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
        6
        classes
      • public.courses.partials.details (resources/views/public/courses/partials/details.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.courses.partials.breadcrumbs (resources/views/public/courses/partials/breadcrumbs.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.courses.partials.heading (resources/views/public/courses/partials/heading.blade.php)7bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
        6
        classes
      • public.layouts.main (resources/views/public/layouts/main.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.layouts.partials.meta (resources/views/public/layouts/partials/meta.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.layouts.partials.navbar (resources/views/public/layouts/partials/navbar.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.auth.profile.partials.links (resources/views/public/auth/profile/partials/links.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      • public.auth.profile.partials.link (resources/views/public/auth/profile/partials/link.blade.php)8bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
        6
        route
        7
        title
      • public.auth.profile.partials.link (resources/views/public/auth/profile/partials/link.blade.php)8bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
        6
        route
        7
        title
      • public.auth.profile.partials.link (resources/views/public/auth/profile/partials/link.blade.php)8bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
        6
        route
        7
        title
      • public.layouts.partials.flash-session (resources/views/public/layouts/partials/flash-session.blade.php)6bladefile
        Params
        0
        __env
        1
        app
        2
        errors
        3
        course
        4
        links
        5
        config
      uri
      GET ar/الدورات/{slug}
      middleware
      web, localize:ar
      controller
      App\Http\Controllers\CourseController@show
      as
      ar.courses.show
      namespace
      prefix
      /ar
      where
      file
      app/Http/Controllers/CourseController.php:17-35
      6 statements were executed11.92ms
      • select * from `courses` where `slug_ar` = 'building-recommender-systems-with-machine-learning-and-ai' limit 1
        10.54ms/app/Http/Controllers/CourseController.php:20corspedia
        Metadata
        Bindings
        • 0. building-recommender-systems-with-machine-learning-and-ai
        Backtrace
        • 17. /app/Http/Controllers/CourseController.php:20
        • 18. /vendor/laravel/framework/src/Illuminate/Routing/Controller.php:54
        • 19. /vendor/laravel/framework/src/Illuminate/Routing/ControllerDispatcher.php:43
        • 20. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:260
        • 21. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:205
      • update `courses` set `visitors` = `visitors` + 1, `courses`.`updated_at` = '2025-07-28 02:38:18' where `id` = 3754
        530μs/app/Http/Controllers/CourseController.php:21corspedia
        Metadata
        Bindings
        • 0. 2025-07-28 02:38:18
        • 1. 3754
        Backtrace
        • 17. /app/Http/Controllers/CourseController.php:21
        • 18. /vendor/laravel/framework/src/Illuminate/Routing/Controller.php:54
        • 19. /vendor/laravel/framework/src/Illuminate/Routing/ControllerDispatcher.php:43
        • 20. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:260
        • 21. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:205
      • select `id`, `name_en`, `name_ar`, `topic_id`, `slug_en`, `slug_ar` from `subjects` where `subjects`.`id` in (58)
        220μs/app/Http/Controllers/CourseController.php:23corspedia
        Metadata
        Backtrace
        • 20. /app/Http/Controllers/CourseController.php:23
        • 21. /vendor/laravel/framework/src/Illuminate/Routing/Controller.php:54
        • 22. /vendor/laravel/framework/src/Illuminate/Routing/ControllerDispatcher.php:43
        • 23. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:260
        • 24. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:205
      • select `id`, `name_en`, `name_ar`, `slug_en`, `slug_ar` from `topics` where `topics`.`id` in (1)
        180μs/app/Http/Controllers/CourseController.php:23corspedia
        Metadata
        Backtrace
        • 25. /app/Http/Controllers/CourseController.php:23
        • 26. /vendor/laravel/framework/src/Illuminate/Routing/Controller.php:54
        • 27. /vendor/laravel/framework/src/Illuminate/Routing/ControllerDispatcher.php:43
        • 28. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:260
        • 29. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:205
      • select * from `providers` where `providers`.`id` in (51) and `providers`.`deleted_at` is null
        200μs/app/Http/Controllers/CourseController.php:23corspedia
        Metadata
        Backtrace
        • 20. /app/Http/Controllers/CourseController.php:23
        • 21. /vendor/laravel/framework/src/Illuminate/Routing/Controller.php:54
        • 22. /vendor/laravel/framework/src/Illuminate/Routing/ControllerDispatcher.php:43
        • 23. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:260
        • 24. /vendor/laravel/framework/src/Illuminate/Routing/Route.php:205
      • select * from `html_files` where `html_files`.`id` = 3745 limit 1
        250μs/app/Models/Course.php:84corspedia
        Metadata
        Bindings
        • 0. 3745
        Backtrace
        • 21. /app/Models/Course.php:84
        • 28. view::public.courses.show:29
        • 30. /vendor/laravel/framework/src/Illuminate/Filesystem/Filesystem.php:125
        • 31. /vendor/laravel/framework/src/Illuminate/View/Engines/PhpEngine.php:58
        • 32. /vendor/laravel/framework/src/Illuminate/View/Engines/CompilerEngine.php:72
      App\Models\HtmlFile
      1
      App\Models\Provider
      1
      App\Models\Topic
      1
      App\Models\Subject
      1
      App\Models\Course
      1
        _token
        rr1s4T97UabYfgbXk0eetZJDQfRSPdD2N8CZY2n5
        locale
        ar
        _previous
        array:1 [ "url" => "https://www.corspedia.com/ar/%D8%A7%D9%84%D8%AF%D9%88%D8%B1%D8%A7%D8%AA/buildi...
        _flash
        array:2 [ "old" => [] "new" => [] ]
        PHPDEBUGBAR_STACK_DATA
        []
        path_info
        /ar/%D8%A7%D9%84%D8%AF%D9%88%D8%B1%D8%A7%D8%AA/building-recommender-systems-with-machine-learning-and-ai
        status_code
        200
        
        status_text
        OK
        format
        html
        content_type
        text/html; charset=UTF-8
        request_query
        []
        
        request_request
        []
        
        request_headers
        0 of 0
        array:24 [ "cf-ipcountry" => array:1 [ 0 => "US" ] "cf-connecting-ip" => array:1 [ 0 => "216.73.216.121" ] "cdn-loop" => array:1 [ 0 => "cloudflare; loops=1" ] "x-forwarded-proto" => array:1 [ 0 => "https" ] "x-forwarded-for" => array:1 [ 0 => "216.73.216.121" ] "sec-fetch-site" => array:1 [ 0 => "none" ] "accept" => array:1 [ 0 => "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7" ] "user-agent" => array:1 [ 0 => "Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)" ] "upgrade-insecure-requests" => array:1 [ 0 => "1" ] "sec-ch-ua-platform" => array:1 [ 0 => ""Windows"" ] "sec-ch-ua-mobile" => array:1 [ 0 => "?0" ] "sec-ch-ua" => array:1 [ 0 => ""Chromium";v="130", "HeadlessChrome";v="130", "Not?A_Brand";v="99"" ] "cache-control" => array:1 [ 0 => "no-cache" ] "pragma" => array:1 [ 0 => "no-cache" ] "sec-fetch-dest" => array:1 [ 0 => "document" ] "cf-ray" => array:1 [ 0 => "9660ffe22c9db40a-YYZ" ] "accept-encoding" => array:1 [ 0 => "gzip, br" ] "priority" => array:1 [ 0 => "u=0, i" ] "sec-fetch-user" => array:1 [ 0 => "?1" ] "sec-fetch-mode" => array:1 [ 0 => "navigate" ] "cf-visitor" => array:1 [ 0 => "{"scheme":"https"}" ] "host" => array:1 [ 0 => "www.corspedia.com" ] "content-length" => array:1 [ 0 => "" ] "content-type" => array:1 [ 0 => "" ] ]
        request_server
        0 of 0
        array:50 [ "USER" => "www-data" "HOME" => "/var/www" "HTTP_CF_IPCOUNTRY" => "US" "HTTP_CF_CONNECTING_IP" => "216.73.216.121" "HTTP_CDN_LOOP" => "cloudflare; loops=1" "HTTP_X_FORWARDED_PROTO" => "https" "HTTP_X_FORWARDED_FOR" => "216.73.216.121" "HTTP_SEC_FETCH_SITE" => "none" "HTTP_ACCEPT" => "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7" "HTTP_USER_AGENT" => "Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)" "HTTP_UPGRADE_INSECURE_REQUESTS" => "1" "HTTP_SEC_CH_UA_PLATFORM" => ""Windows"" "HTTP_SEC_CH_UA_MOBILE" => "?0" "HTTP_SEC_CH_UA" => ""Chromium";v="130", "HeadlessChrome";v="130", "Not?A_Brand";v="99"" "HTTP_CACHE_CONTROL" => "no-cache" "HTTP_PRAGMA" => "no-cache" "HTTP_SEC_FETCH_DEST" => "document" "HTTP_CF_RAY" => "9660ffe22c9db40a-YYZ" "HTTP_ACCEPT_ENCODING" => "gzip, br" "HTTP_PRIORITY" => "u=0, i" "HTTP_SEC_FETCH_USER" => "?1" "HTTP_SEC_FETCH_MODE" => "navigate" "HTTP_CF_VISITOR" => "{"scheme":"https"}" "HTTP_HOST" => "www.corspedia.com" "REDIRECT_STATUS" => "200" "SERVER_NAME" => "corspedia.com" "SERVER_PORT" => "443" "SERVER_ADDR" => "141.95.147.152" "REMOTE_USER" => "" "REMOTE_PORT" => "39094" "REMOTE_ADDR" => "172.69.130.222" "SERVER_SOFTWARE" => "nginx/1.18.0" "GATEWAY_INTERFACE" => "CGI/1.1" "HTTPS" => "on" "REQUEST_SCHEME" => "https" "SERVER_PROTOCOL" => "HTTP/2.0" "DOCUMENT_ROOT" => "/var/www/corspedia/public" "DOCUMENT_URI" => "/index.php" "REQUEST_URI" => "/ar/%D8%A7%D9%84%D8%AF%D9%88%D8%B1%D8%A7%D8%AA/building-recommender-systems-with-machine-learning-and-ai" "SCRIPT_NAME" => "/index.php" "CONTENT_LENGTH" => "" "CONTENT_TYPE" => "" "REQUEST_METHOD" => "GET" "QUERY_STRING" => "" "SCRIPT_FILENAME" => "/var/www/corspedia/public/index.php" "PATH_INFO" => "" "FCGI_ROLE" => "RESPONDER" "PHP_SELF" => "/index.php" "REQUEST_TIME_FLOAT" => 1753670298.2038 "REQUEST_TIME" => 1753670298 ]
        request_cookies
        []
        
        response_headers
        0 of 0
        array:5 [ "content-type" => array:1 [ 0 => "text/html; charset=UTF-8" ] "cache-control" => array:1 [ 0 => "no-cache, private" ] "date" => array:1 [ 0 => "Mon, 28 Jul 2025 02:38:18 GMT" ] "set-cookie" => array:2 [ 0 => "XSRF-TOKEN=eyJpdiI6Ilpoeml4TWI5Rk9tYjBKT3BlTGN5c3c9PSIsInZhbHVlIjoiQmVVTHJvdVdnY2ZWOG1GMTFzTnBiOWszTWRrZ21DYUtsd1RCWHJvRmpkZjd0MnlVbFFuemx0dE53OXRobWRLU2hMTkI2RHpVaU1QV2tDeUk0VS9vZjlrZjhsSFJsNitpREtpVXB6dnFPc0o0SlVzaUpZcjhHazFKSWIrSHBQaDMiLCJtYWMiOiI3NzI0NGZmNzFhNWExMGUxZjM1MzBhNzhkY2RiNjkyMjFhODlmZGQ2MzI3MmQ0NDY3MjhkNzcxYmUzZWQ4YzI2IiwidGFnIjoiIn0%3D; expires=Mon, 28 Jul 2025 04:38:19 GMT; Max-Age=7200; path=/; samesite=laxXSRF-TOKEN=eyJpdiI6Ilpoeml4TWI5Rk9tYjBKT3BlTGN5c3c9PSIsInZhbHVlIjoiQmVVTHJvdVdnY2ZWOG1GMTFzTnBiOWszTWRrZ21DYUtsd1RCWHJvRmpkZjd0MnlVbFFuemx0dE53OXRobWRLU2hMTkI2R" 1 => "laravel_session=eyJpdiI6IkM3WURuRHA4bjlhc0JxN2tVM1VXM2c9PSIsInZhbHVlIjoiVmFKTDZLOTVSU2tnalgreHoxU2EvVTNIeEUxdDhGYityQWpSZEJjLzZBREFVc2txMFNFb1dHdnpHTG54QitaaDhpUjVmQUE1bWlqcnlGalBQYzZOZjdVZWsxYllzdGFETWkwMGRrZU9KRFMxUkxidGpWS05yaEJHYXFuRVZmVkgiLCJtYWMiOiI3M2Q0Y2VkYWNhMDAzNzY2MWJlMjhlMjZlMzc1ZDk3YmM4Yzc3ZTc5NGMzYTg1ZDM1NDBmM2I3YWZlN2JiMWJiIiwidGFnIjoiIn0%3D; expires=Mon, 28 Jul 2025 04:38:19 GMT; Max-Age=7200; path=/; httponly; samesite=laxlaravel_session=eyJpdiI6IkM3WURuRHA4bjlhc0JxN2tVM1VXM2c9PSIsInZhbHVlIjoiVmFKTDZLOTVSU2tnalgreHoxU2EvVTNIeEUxdDhGYityQWpSZEJjLzZBREFVc2txMFNFb1dHdnpHTG54QitaaDhp" ] "Set-Cookie" => array:2 [ 0 => "XSRF-TOKEN=eyJpdiI6Ilpoeml4TWI5Rk9tYjBKT3BlTGN5c3c9PSIsInZhbHVlIjoiQmVVTHJvdVdnY2ZWOG1GMTFzTnBiOWszTWRrZ21DYUtsd1RCWHJvRmpkZjd0MnlVbFFuemx0dE53OXRobWRLU2hMTkI2RHpVaU1QV2tDeUk0VS9vZjlrZjhsSFJsNitpREtpVXB6dnFPc0o0SlVzaUpZcjhHazFKSWIrSHBQaDMiLCJtYWMiOiI3NzI0NGZmNzFhNWExMGUxZjM1MzBhNzhkY2RiNjkyMjFhODlmZGQ2MzI3MmQ0NDY3MjhkNzcxYmUzZWQ4YzI2IiwidGFnIjoiIn0%3D; expires=Mon, 28-Jul-2025 04:38:19 GMT; path=/XSRF-TOKEN=eyJpdiI6Ilpoeml4TWI5Rk9tYjBKT3BlTGN5c3c9PSIsInZhbHVlIjoiQmVVTHJvdVdnY2ZWOG1GMTFzTnBiOWszTWRrZ21DYUtsd1RCWHJvRmpkZjd0MnlVbFFuemx0dE53OXRobWRLU2hMTkI2R" 1 => "laravel_session=eyJpdiI6IkM3WURuRHA4bjlhc0JxN2tVM1VXM2c9PSIsInZhbHVlIjoiVmFKTDZLOTVSU2tnalgreHoxU2EvVTNIeEUxdDhGYityQWpSZEJjLzZBREFVc2txMFNFb1dHdnpHTG54QitaaDhpUjVmQUE1bWlqcnlGalBQYzZOZjdVZWsxYllzdGFETWkwMGRrZU9KRFMxUkxidGpWS05yaEJHYXFuRVZmVkgiLCJtYWMiOiI3M2Q0Y2VkYWNhMDAzNzY2MWJlMjhlMjZlMzc1ZDk3YmM4Yzc3ZTc5NGMzYTg1ZDM1NDBmM2I3YWZlN2JiMWJiIiwidGFnIjoiIn0%3D; expires=Mon, 28-Jul-2025 04:38:19 GMT; path=/; httponlylaravel_session=eyJpdiI6IkM3WURuRHA4bjlhc0JxN2tVM1VXM2c9PSIsInZhbHVlIjoiVmFKTDZLOTVSU2tnalgreHoxU2EvVTNIeEUxdDhGYityQWpSZEJjLzZBREFVc2txMFNFb1dHdnpHTG54QitaaDhp" ] ]
        session_attributes
        0 of 0
        array:5 [ "_token" => "rr1s4T97UabYfgbXk0eetZJDQfRSPdD2N8CZY2n5" "locale" => "ar" "_previous" => array:1 [ "url" => "https://www.corspedia.com/ar/%D8%A7%D9%84%D8%AF%D9%88%D8%B1%D8%A7%D8%AA/building-recommender-systems-with-machine-learning-and-ai" ] "_flash" => array:2 [ "old" => [] "new" => [] ] "PHPDEBUGBAR_STACK_DATA" => [] ]